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Rarefaction waves (RW) in granular fillings have been investigated in [i, 2]. The 
effects of the pressure in the gaseous phase and of grain size on RW velocity and form were 
described. The present paper is concerned with propagation of modulated RW in free granular 
beds of various compositions. The general patterns of behavior of perturbations as a func- 
tion of the initial parameters of the material were observed. It was discovered that, in 
a granular filling of any composition, the attenuation coefficient of perturbations increas- 
es monotonically with increasing initial pressure. An increase in the grain size at a fixed 
pressure causes the attenuation coefficient to grow in the range of 7-50 ~m and to decrease 
for grain sizes of 100-1000 Bm. A model of these effects has been developed. It is based 
on expansions of familiar equations for multiphase dynamics [3, 4] near the equilibrium 
state withrespect to a parameter defined as the ratio of gas density to the density of the 
solid phase. In terms of this model the attenuation coefficient is expressed as a function 
of problem parameters. The relations are consistent with experimental observations. 

I. Experimental Methods and Results. The experiments were conducted in a vertical 
percussion tube with a diameter of 0.06 m and a length of 1.8 m, which comprised a high- 
pressure chamber (HPC) and a low-pressure chamber (LPC) 0.9 m long. The general layout of 
the equipment is illustrated in Fig. i: I) LPC, 2) HPC, 3) measurement sensors, 4) trigger- 
ing sensor, 5) compressed air main valve, 6) pressure gauge, 7) amplifier module, 8) com- 
puter, 9) level of granular filling (piston), i0) diaphragm. In the HPC at 0.36, 0.54, and 
0.72 m from the lower flange, piezoelectric pressure sensors of an original design (an 
analog of the LKh601) were mounted which had a passband of 1-10 s Hz (time constant 0.5 sec). 
The sensors were mounted flush with the working channel wall. Signals from the sensors were 
sent to the amplifier and then through ADC to an ~lektronika-60 microcomputer. According 
to the experimental conditions, an air gap of 0.15 m was maintained between the top layer 
of the filling and the membrane. The materials listed in Table i were used for filling. 
The pressure in the LPC was atmospheric; in the HPC it was varied from 0.ii to 0.26 MPa. 

The oscillograms of the pressure in cement and aluminum y-oxide are shown in Figs. 2 
and 3 (~-= p - P0, P0 is the initial pressure). 

Curves I-3 (4-6) in Fig. 2 depict the pressure in cement at an initial positive pres- 
sure in the LPC of A-p = 0.04 (0.09) MPa at distances Ax = 0.72, 0.54, and 0.36 m from 
the lower flange, respectively. We will make some comments concerning these curves. After 
the diaphragm is broken, a pressure pulse with a steep leading edge (shockwave) and a gentle 
trailing edge is formed in the LPC. Due to the considerable density of the two-phase mix- 
ture, the characteristic time of RW penetration into the filling is significantly longer 
than the time of transmission of the shock pulse through the LPC. As a result of reflection 
of the shock pulse from the gas/two-phase mixture contact interface, the pressure drop curve 
is disturbed by an almost harmonic pattern with a period of T o = 2Li/c s, L l is the LPC 

length, and c s is the shock pulse velocity (Fig. 2, curves i and 4). As the rarefaction 

wave front penetrates further into the two-phase mixture, it becomes less steep and, at 
the same time, the perturbation amplitude decreases (curves 2, 3, 5, and 6). 

A similar picture is observed in the propagation of RW into aluminum 7-oxide (d = 
50 ~m). Curves 1-3 (4-6) in Fig. 3 were recorded at Ap = 0.03 (0.05) MPa. However, in 
this case, already at the smallest pressure gradient (~0.01MPa), perturbations do not pene- 
trate into the filling (in cement, perturbations penetrate throughout the thickness of the 
layer, even at A-p = 0.06 MPa). It has been established that the perturbation attenuation 
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TABLE 1 

Material 

Aluminum oxide: 
fine 
coarse-grained* 

Cement 

p,  k g / m  a s 

1188 0.7 
732 0.65 
985 0.56 

*Spherical granules obtained by baking. 

d, ~m 

50 
2500 

7 

de, m/sec 

10.97 

12.1 

Do, m2/sec 

0.34 
166 

0.0027 

coefficient x = in IA(x~)IA(x2)Illxl - x21 (A is the perturbation amplitude) grows monoton- 

ically with increasing pressure in the granular fillings of any composition. This is seen, 
for example, from a comparison of the data in Figs. 2 and 3. 

A low propagation velocity is typical for rarefaction waves in finely dispersed gran- 
ular fillings (d ~ i0-" m). As will be shown below, in the case of an equilibrium (in terms 
of phase velocites), the wave velocity depends on the pressure and density of the mixture 
according to the expression 

c~ = y~p-7~, (i.i) 

where E is porosity. Thus, under normal conditions in cement c e = 12.1 m/sec. Expression 

(i.i) is consistent with the experimental data [2]. 

Figure 4 represents (I.I). Curves 1 and 2 are the data for cement and aluminum y-oxide 
(d = 50 Dm), respectively. The values in [i], for a granular filling with a grain diameter 
of ~14 ~m, are slightly higher. We attributed this to the short duration of the pressure 
pluse (~3 msec), whose velocity may have deviated from an equilibrium level. With the part- 
icle size increasing from 7 to 50 ~m, x also grows, but this pattern is suddenly violated 
at the transition to coarse-grained fillings. In Fig. 3 (curves 7-9) pressure oscillograms 
describe the propagation of modulated RW in a filling with a grain size of d ~ 2500 ~m 
(aluminum y-oxide produced by baking); the initial pressure gradient was A-~ = 0.04 MPa. 
As will be shown below, the rarefaction process in a granular filling in this case is sim- 
ilar to a diffusional process, as can be clearly seen from a comparison of the curves. On 
the time scale of the process, the delay of signals from sensors immersed in the filling 
(8 and 9) is negligible compared to signals from the upper sensor (7). Pressure perturba- 
tions penetrate the entire thickness of the filling almost simultaneously. Comparing the 
data in Figs. 2 and 3, we see that ~ in aluminum y-oxide at d z 2500 ~m is considerably 
smaller than at d z 50 Dm and comparable to the value of ~ in cement. 

2. Derivation of Model Equations. In modeling rarefaction waves in a granular fill- 
ing we proceed from dynamic equations for a two-phase material [3, 4]. In an isothermal 
approximation, 

91dlulldt + eVP = ~12(u2 - -  u l )  + Olg ,  

9~d2u2M t + 92dlUl ~dr + VP = (91 q- o2)g, ( 2 . 1 )  

dlgJdt = --91divul,  d29Jdt = --92divu2. 

Here, ul,2 and P i , 2  are the velocities and densities of the gaseous and solid phases; dl/dt = 

~/~t +(ui'v)~ d2/dt ~ O/Ot ~ (u2.v) ; ~12i s the parameter of interphase force interaction; g 
is the vector of mass forces. 
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Equation system (2.1) is closed by relations of flow isothermicity, continuity of the 
gaseous medium, and incompressibility of particles: 

p = pgRT,  T =: const ;pl  = ePg;p2 = (1 --  e)ps, p~ = const ( 2 . 2 )  

(pg i s  t h e  t r u e  gas  d e n s i t y ,  Ps i s  t h e  d e n s i t y  o f  t h e  g r a i n  m a t e r i a l ,  and R i s  t h e  gas  con-  
s t a n t ) .  

We w i l l  examine  t h e  c a s e  o f  a c o n c e n t r a t e d  gas  s u s p e n s i o n  s l i g h t l y  d i s e q u i l i b r a t e d  by 
phase  v e l o c i t i e s .  For  t h i s  gas  s u s p e n s i o n  t h e  e s t i m a t e s  

9~ >> P~' "--d-/- I -'-JU l" ( 2 . 3 )  

take place. These relations may not be satisfied near the gas-filling interface and may 
not take place for brief processes, as in the experiments of [i]. We further assume that 
th'e interface is a thin, light, and rigid piston and the duration of the pressure pulse 
is sufficiently long. (Some of the above-described experiments were performed expressly 
to determine the effect of the piston on the process dynamics. However, no significant 
differences in the behavior of pressure were observed from the results plotted in Figs. 2 
and 3.) Applying an estimate of the order of magnitude of (2.3) to the second equation of 
system (2.1), we find 

dt "~" " 

Hence ,  and f rom t h e  f i r s t  . e q u a t i o n  o f  ( 2 . 1 ) ,  f o l l o w s  t h a t ,  s u b j e c t  t o  c o n s t r a i n t  ( 2 . 3 ) ,  t he  
f low of  t h e  g a s e o u s  medium w i t h i n  t e rms  o f  the  o r d e r  o f  P l /P2  << 1 s a t i s f i e s  t h e  f i l t r a t i o n  
e q u a t i o n  

eVp = %du.,  - -  u0. (2.4) 

Assume that the interphase interaction coefficient at these flow parameters is not 
explicitly dependent on phase velocities. Solving (2.4), we write u~ ----u~- ~Vp/~n. With 
the aid of this result and closing relations (2.2), we rewrite equations for the heterogen- 
eous model of [3]: 

p2du2 ~dr q- VP == P2g, OpJOt q- (u2"v)P2 = --p~div u2, 
Opg/Ot Jr- (u2.v)Dg = --(pg/e)div u2 -4- (t/e)div (eDoVP) ( 2 . 5 )  

(D O = ep / ' r  i s  t h e  e f f e c t i v e  d i f f u s i v i t y  o f  t h e  g a s e o u s  p h ase  in  a h e t e r o g e n e o u s  medium).  
By u s i n g  t h e  h y p o t h e s i s  o f  f low i s o t h e r m i c i t y ,  we can r e p r e s e n t  t h e  l a s t  e q u a t i o n  o f  sys t em 
( 2 . 5 )  a s  

@lOt + ( u r v ) p  = - - (p f e )d iv  us + ( l / e )d iv  (eDovp).  ( 2 . 6 )  

Therefore, in an isothermal filling in conditions close to equilibrium the pressure in the 
material conforms to the law of convective diffusion. The average gas velocity relative 
to particles is equal to the filtration velocity. We will evalute D o and determine how it 
is affected by flow parameters. Previous data on interphase friction in granular beds [4], 
fillings [5], dust-laden flows [6], and saturated grounds [7], in an approximation linear 
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TABLE 2 

f(e) 

633-r 
t50-tVe 2 
180-r2/e2 
58,7x/e 2,5 
24-r/ca, 7 

Refer- 
ence 

I41 
[41 
[7l 
[51 
[61 

o,'} I OA I 0,5 [ o,6 [ o,7 I 0,95 
l(s) 

380 3t6,5 I 253,2 
337,5 t50 ] 66,7 
405 t80 I 80 
348 [166 [84 ,2  
427,51156 [ 63,5 

190 
27,6 
33,i 
43 
27 

443,i 
816,7 
980 
833,6 

]445 

3~ .65 
0,42 
0,5 
3,34 
t,45 

with respect to the relative phase velocity, can be represented in the following form: 

(P,2 = Fe/(e)l d" ( 2 . 7  ) 

[p  is the dynamic gas viscosity, f(g) is a certain function]. This linear approximation 
corresponds to Darcy's law of gas filtration. The diffusivity in (2.5), taking into account 
(2.7), is expressed by 

D o = pdffF](e) .  ( 2 . 8 )  

Remarkably, D o depends on the grain size and is inversely proportional to the gas viscosity. 
The interphase friction coefficient (2.7) exhibits quite different patterns as a function 
of porosity or the volumetric gas constant the data of different investigators. The perti- 
nent expressions with specific values and references are given in Table 2, where r is the 
volumetric content of the solid phase (~ = i - s). 

According to Table 2, for air under normal conditions in a granular filling with the 
root mean square grain size d = 5 • i0 -s m, we find D o = 14.7 f(g)m2/sec. At E = 0.5, 
according to [4], D o = 0.046 m2/sec; at g = 0.7, according to [5], D o = 0.34 m2/sec. With- 
out going into the details of these relations, we will note that the data of [4] provide a 
best approximation of f(a) at small g ~ 0.4; the data of [6] are better at larger values of 
g (2 0.95). The applicability scope of the remaining results in Table 2 are intermediate 
between these two extremes. 

The postulated isothermicity of the process is affected by experimental conditions. 
Before the beginning of the experiment, there was no vertical temperature gradient in the 
granular filling layer. During the process of rarefaction, gas is cooled. However, because 
of the smallness of the Mach number of the flow (M 0 : Ce/Cs, c s is the speed of sound in a 

pure gas), the change in temperature is so small that it is not registered by a conventional 
platinum thermocouple. In addition, at comparable specific heat capacities, gas is of an 
extremely low density compared to the disperse phase, which in this case functions as a 
thermostat. It can be demonstrated that within terms of the order of PI/P2 the temperatures 
of the gas and the particles in this process are linked by the relation 

where ~z2 is the interphase heat exchange parameter. By using (2.4) and the estimate for 
the maximum pressure gradient in the form IVpl ~ p%2/Ce, we can formulate the estimate for 

the relative change in the gas temperature as 

In cement and in finely dispersed aluminum oxide, 6T/T ~ I0 -~, i.e., comparable to the error 
of model (2.5), which is of the same order of magnitude: PI/P2 N i0-~ 

3. Equilibrium Model. We will consider the limiting form of equations of model (2.5) 
for d ~ 0. This case corresponds to fully equilibrated isothermal flow of the mixture. 
The equations appear as 

9 2 d 2 u j  d t  + VP = 9~g, d"-P"/dt ~ - -Pc d iv  u~, ( 3 . 1  ) 
dell, 'dt : -  - -  (p t e )d  i v u... 
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As an approximation, we can set e = 1 - P2/Ps. For barotropicmotions, setting p = f(P2), 

we find from the last two equations 

dpldp2 = pl(ep2), ( 3 . 2 )  

W i t h i n  t e r m s  o f  t h e  o r d e r  o f  P l / P 2  t h i s  c o i n c i d e s  w i t h  t h e  s q u a r e  o f  t h e  e q u i l i b r i u m  sound 
v e l o c i t y  ( s e e  T a b l e  1 ) .  Fo r  c o a r s e - g r a i n e d  f i l l i n g s  t h e  n o t i o n  o f  an e q u i l i b r i u m  s p e e d  o f  
sound  becomes m e a n i n g l e s s ,  a s  w i l l  be e x p l a i n e d  l a t e r .  

I n  t h e  f r amework  o f  mode l  ( 3 . 1 ) ,  we i n v e s t i g a t e d  t h e  f o l l o w i n g  p i s t o n  p r o b l e m .  In  a 
t u b e  o f  l e n g t h  L and c r o s s  s e c t i o n  S, a vo lume 0 ~ x ~ s i s  o c c u p i e d  by a m i x t u r e  w i t h  
g i v e n  v a l u e s  o f  E and P2- The volume s < x ~ L i s  o c c u p i e d  by a p e r f e c t  gas  w i t h  t h e  a d i a -  
b a t i c  e x p o n e n t  y .  The c r o s s  s e c t i o n  x = s i s  o c c u p i e d  by a t h i n  p i s t o n  o f  mass m. At t h e  
i n i t i a l  t i m e  t h e  p r e s s u r e  d i s c o n t i n u i t y  i s  s p e c i f i e d  i n  t h e  form o f  

l 
P2 at O<~x<~12, l l<l~<L,  

P = Pl a t  12<x<'~ L, P l < P ~ "  

The t e m p e r a t u r e  a l o n g  t h e  e n t i r e  l e n g t h  o f  t h e  t u b e  a t  t = 0 i s  c o n s t a n t  and e q u a l  t o  T O . 
We p r o p o s e  to  d e s c r i b e  t h e  s t a t e  o f  t h e  s y s t e m  a t  T > 0. 

The gas  dynamic  component  o f  t h e  p r o b l e m  was s o l v e d  by t h e  L a x - W e n d r o f f  method i n  t h e  
f r amework  o f  a p e r f e c t  g a s  m o d e l .  The p a r a m e t e r s  o f  t h e  m i x t u r e  were  c a l c u l a t e d  a c c o r d i n g  
t o  t h e  same scheme w i t h  ( 3 . 1 )  a p p l i e d  t o  a o n e - d i m e n s i o n a l  n o n s t a t i o n a r y  f l o w .  The c o o r d -  
i n a t e  s y s t e m  i s  c h o s e n  as  i n  F i g .  1, wh ich  shows t h e  i n i t i a l  p r e s s u r e  c u r v e .  The n u m e r i c  
s o l u t i o n s  on t h e  p i s t o n  were  c o o r d i n a t e d  w i t h  i t s  dynamic  by means o f  t h e  e q u a t i o n  

(P2 - -  P l )  S = mxo a t  x = Xo(t) ( 3 . 3 )  

and were  c l o s e d  by t h e  c o n d i t i o n s  o f  gas  and m i x t u r e  n o n l e a k a g e :  

ul = u2 = x 0 a t  x = x 0 ( t ) , u l ( L ,  t) = u 2 ( 0 ,  t) = 0, ( 3 . 4 )  

where  S and x 0 a r e  t h e  p i s t o n  a r e a  and c o o r d i n a t e ;  s u b s c r i p t  1 r e f e r s  t o  g a s .  The r e s u l t s  
of calculations of the decay of gas discontinuity above a cement layer are illustrated in 
Fig. 5a, where the pressure curves relative to tube length are indicated for the different 

time points. Initial data: T O = 300 K; g = 0.56; P2 = 1250 kg/m3; P2 = 0.1612 MPa; Pl = 

0.I MPa; y = 1.4. We see that the pressure pulse in the gas dynamic section, repeatedly 
colliding with the piston (curves I-5), are given for the time points t = 5.6, i0.I, 23.4, 
56.1, and 102.6 msec, respectively) produces a modulation of the rarefaction wave: the 
left-hand side of the curves at 0 s x s I. 'The normalized coordinate is 

Ix/xo a t  0 ~< x ~< x o, 

= [(x + L - -  2xo)/(L - -  Xo) at  x 0 < x  ~< L. 

Curves i-4 in Fig. 5a correspond to the first through fourth reflections of the shock- 
wave from the piston; curve 5 describes the process stage where the pressure in the gas com- 
partment is practically equalized and the rarefaction wave in the filling has been reflect- 
ed from the lower flange of the tube. The pressure oscillograms for that time are shown in 
Fig. 5b, where curves I-3 correspond to pressures in the cross sections at distances Ax = 
0.72; 0.54; 0.36 m from the bottom flange. Comparing the curves in Figs. 2 and 5b, we see 
a fairly good agreement in pressure oscillation period. However, the actual pulse at Ap = 
0.02 MPa attenuates faster than does the calculated pulse at Ap = 0.0612 MPa. On the other 
hand, comparing the data in Figs. 3 and 5b, we see that if the modulation wave (MW) is sub- 
tracted, the amplitudes of calculated and measured RW correlate with each other. However, 
at these pressures, the MW does not penetrate at all into an aluminum 7-oxide filling. 

In the framework of an equilibrium model, one can determined the magnitude of the crit- 
ical pressure gradient at which a supersonic mixture outflow sets in. This value is estimat- 
ed from a solution of the above piston problem. The piston velocity x0 = 0 at t = 0 is con- 
stant and equal to U 0 at t > 0. As will be seen from the subsequent derivations, the motion 
of the mixture in this case is self-similar and barotropic. Choosing a coordinate system 
in such a way that at t = 0 the piston is at rest at the origin, and the axis x' is direct- 
ed into the interior of the filling, and setting in (3.1) $ = x'/t is the self-similar var- 

iable 02 = P2($), u2 = u~(~), p = p($), we find 

(u2 - -  ~)dp/d~ + p2du/d~ = O, ( 3 . 5 )  
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i dp O, (u 2 - ~ )  ~p P du2 
( u ~ - U ~ +  ~ d ~ - -  ~ + - F ~ = ~  

From the first and last equations in (3.5), we derive the expression for the sound velocity 

squared: 

2 dp/d92 = pl(e92) = e~. ( 3 . 6  ) 

The solubility condition for system (3.5) is the relationship between mass velocity and 
sound velocity: 

u~ ~ ~ + c ~ .  

In this case, we are concerned with solution of (3.7) % = ~ - c e. 

last equation of (3.5), we find 

(3.7) 

Substituting it into the 

duffdp2 -~ ce/pv (3.8) 

Integrating (3.6) and (3.8) and taking into account g = 1 - pi/ps, we write 

ce(P~) ---- ce~176 ( 3 . 9 )  
(l  - -  e) ~o 

u~ (,o~) = c~oe o In ~ ~0) e' P2 ---- Pi0 (t - -  e) e0/(t  - -  %) e 

( s u b s c r i p t  0 i d e n t i f i e s  t h e  p a r a m e L e r s  o f  t h e  i n i t i a l  s t a t e ) .  S u b s t i t u t i n g  ( 3 . 9 )  i n t o  
( 3 . 7 ) ,  we w r i t e  t h e  law o f  m o t i o n  o f  t h e  m i x t u r e  in  an i m p l i c i t  fo rm:  

( 5(2-2  ~C~oe o t / t + l n ~ ( l _ e o )  ]" ( 3 . 1 0 )  

Finally, since we know s = g($), we can find Ce($), u2($). At the point g0, where u=(g 0)= 

U0, the solution of (3.9) is conjugated with a constant flow as in a similar problem of 
expansion of a perfect gas under a piston (see, e.g., [8]). From (3.9) we can determine 
the density or the pressure of the mixture at which for the first time u2 = -c e, i.e., a 

supersonic outflow condition is realized. These parameters are expressed in terms of the 
solution of the transcendental equation 

e,  ln ~{--_- ~ ;  ~ t (3.11) 

in  t h i s  fo rm:  

~ = o, (l  - ~,), p;  = p~o~o (t - t , ) / ~ ,  (~ - to) 

(g, is the critical porosity). Hence, at g0 = 0.7 and g, = 0.88; therefore, pi/P2 * = 3.12. 

Note that in a similar problem of polytropic gas flow this ratio is equal to P0/P* = [(7 + 
i)/2327/(7 -I) . Setting u = I/E 0 at g0 = 0.7, we have P0/P* = 3.65. Comparing the latter 

value with the estimate obtained earlier for a granular filling, we see that the flow of 
the mixture differs little from that of a polytropic gas. This follows from the outward 
similarity of (3.1) and the model of a gas with a constant ratio of thermal capacities. 
Importantly, in the above experiments the ratio of pressures required for a supersonic mix- 
ture flow should be even greater than the theoretical estimate, because the piston is decel- 
erated at the interaction with the gas in the upper compartment. The data in Figs. 2 and 
3 were obtained at Pi/Pl s 2. Thus, we know a priori that a supersonic condition of equil- 
ibrium flow was not attained in our experiments. This is also confirmed by direct numeric 
calculations. Nonequilibrium effects must be taken into account to explain these results. 
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4. Sound Attenuation. In the equations of a nonequilibrium model we set 

g = O, p2 = Po + P , P  = P 0  + p ,  u2 = u o + u  

(subscript 0 identifies constant quantities; the tilde identifies the parameters of sound 
perturbations). Linearizing (2.5) and (2.6) for quantities with the tilde, we obtain in 
the one-dimensional case 

a--t" + u~ + P~ ~-z = O, (4.1) 

~ o~ I o~ O, o~ o~ Po o~ = D o ~  
~ t  + "0 ~ + % o x ~ + .o ~ + ~-~ o-~ ~ �9 

By virtue of (2.8), here, D O = p0d2/~f(r The values of D O for different fillings are 
given in Table i. For a monochromatic perturbation proportional to exp (ikx - imt), it 
follows from (4.1) that 

@--ku~  v~ k2 - -  ( ~  - -  k u ~  - -  ku~ + iD~ = 0 .  ( 4 . 2 )  

The b e h a v i o r  o f  ~ = ~ ( k ) ,  p l o t t e d  on t h e  b a s i s  o f  ( 4 . 2 ) ,  has  t h r e e  b r a n c h e s .  One o f  them, 
= ku0 , corresponds to perturbations propagating with the velocity of the main flow; the 

other two, 

2 .~ 2 
= k (.o _+ V I - - ( 4 . 3  ) 

c o r r e s p o n d  t o  sound p e r t u r b a t i o n s .  We see  f rom ( 4 . 3 )  t h a t  f o r  r e a l  wave number v a l u e s ,  t h e  
frequency is a complex parameter. However, the experimental conditions are such that 
should be viewed as the real parameter. Instead of (4.3), we will write the initial cubic 
equation that is not soluble for k [the term in brackets in (4.2)]: 

iuoDo ka + (c~ - -  u~ - -  i~Oo)k  ~ + 2uo~k - -  ~ = O. ( 4.4 ) 

We s e t  in  ( 4 . 4 )  u0 = O, which  c o r r e s p o n d s  t o  sound P e r t u r b a t i o n s  in  a q u i e s c e n t  medium. 
Solving it for k, we obtain 

k = -q- we i~/2/(Ce(i + tg~) l /4) ,  ( 4 . 5 )  

where ~ = tan-l(2D0~/Ce2). We assume that the piston vibrates harmonically with a period 

T = 2Li/c s (L I is the length of the LPC and c s is the adiabatic sound velocity in the gas). 

Substituting into (4.5) m = 2~/T, we find the perturbation attenuation coefficient 

• = Im k = ac8 sine/2 
L / e  (1 + tg 2r " (4 "6 )  

I t  has  been e s t a b l i s h e d  t h a t  t h e  f u n c t i o n  • = • ~ ) has  a maximum a t  ~ = w/3. B e s i d e s ,  
~ (0 )  = x (w/2 )  = 0. T h e r e f o r e ,  a t  a c e r t a i n  f i l l i n g  g r a i n  s i z e  t h e  a t t e n u a t i o n  o f  p e r t u  K- 
b a t i o n s  i s  maximal .  Th i s  s i z e  can be d e t e r m i n e d  from t h e  c o n d i t i o n  2D0~/Ce 2 = t a n  w/3 = s 
t a k i n g  i n t o  a c c o u n t  ( 2 . 8 ) .  In  p a r t i c u l a r ,  f o r  t h e  f i n e l y  d i s p e r s e d  aluminum X - o x i d e ,  a c c o r d -  
ing  t o  T a b l e s  1 and 2, ~ D 0 c s / ( L z c e  2) = 3 . 3 3 .  Here ,  ~ = 3 4 . 5 .  By c o n t r a s t ,  in  cement ,  where 
t h e  r o o t  mean s q u a r e  g r a i n  s i z e  d = 7 ~m and r = 0 . 5 6 ,  D o ~ 2 . 7 " 1 0  -~ m 2 / s e c ,  and x = 0 . 8 4 ,  
which  i s  r e a s o n a b l y  c o n s i s t e n t  w i t h  t h e  e x p e r i m e n t a l  d a t a .  At t h e s e  p a r a m e t e r s  t h e  r e a l  
p a r t  o f  t h e  wave number Rek  = k 0 i s  much g r e a t e r  in  a b s o l u t e  v a l u e  t h a n  ~. We s e t  in  ( 4 . 4 )  
k = k0 + i:• and,  a s suming  t h a t  t h e  r a t i o  •  0 i s  s m a l l  ( [u , /k0[  r 1 ) ,  we r e p r e s e n t  i t s  s o l u -  
t i o n  at uo ~ 0 as 

~(Me• t) iDol2 

k = - -  c e ( l - - M ~ )  ~ 2c~(tiMe) a '  

where M e = u0,/c e i s  t h e  e q u i l i b r i u m  Mach number.  The t o p  s i g n  c o r r e s p o n d s  t o  p e r t u r b a t i o n s  
p r o p a g a t i n g  a c r o s s  t h e  f l o w ;  t h e  bo t t om s i g n ,  a l o n g  t h e  f l ow .  For  waves moving f rom t h e  
p i s t o n  i n s i d e  t h e  f i l l i n g ,  

• = Do~q2c~ (t - -  Me) 3. ( 4 . 7 )  

As can be seen from (4.7), with M e growing up to unity, ~ increases without limit, which 
explains the behavior of modulated RW in cement (see Fig. 2). Indeed, by virtue of (3.9), 

8 8 0  



M e = gin(p2/pl). At P2/Pl = 2 and E = 0.56, we find e,=0.718 andMe = 0.5. From (4.7) it 

follow that ~ is increased eightfold over its values at P2 = Pz- 

We will examine the behavior of pre___ssure waves in a coarse-grained alumino_m oxide. 
The velocity head of the gas phase at Ap = i MPa is insufficient for considerably changing 
the volume of the filling or for moving it. Therefore, in equations of the nonequilibrium 
model (2.5) and (2.6), we set u2 = 0, g = const. Now, from (2.6), we obtain an equation 
familiar from the filtrationtheory: 

ap/at  = a(Doaplax)/a~ (4.8) 

For  m o n o c h r o m a t i c  p e r t u r b a t i o n  o f  s m a l l  a m p l i t u d e ,  t h i s  l e a d s  t o  a s i m p l e  d i s p e r s i o n  equa-  
t i o n :  im = D0 k2.  S o l v i n g  i t  f o r  k,  s e p a r a t i n g  t h e  r e a l  and i m a g i n a r y  p a r t s ,  and t a k i n g  
i n t o a c c o u n t  t h e  e x p r e s s i o n  f o r  D O , we w r i t e  t h e  p e r t u r b a t i o n  a t t e n u a t i o n  c o e f f i c i e n t :  

• = ] / ~ H / ( e o ) / ( 2 p o d ~ )  . ( 4 . 9 )  

This  e x p r e s s i o n  can a l s o  be d e r i v e d  d i r e c t l y  f rom ( 4 . 6 )  in  t h e  l i m i t  r + ~ /2 .  C a l c u l a t i n g  
• f rom T a b l e s  1 and 2, we f i n d  • = 2 . 6 1 .  The r e a l  p a r t  o f  t h e  wave v e c t o r  has  t h e  same 
v a l u e .  Hence,  t h e  w a v e l e n g t h  o f  p e r t u r b a t i o n s  i = 2~/k  0 = 2 .4  m. These  r e s u l t s  a r e  con -  
s i s t e n t  w i t h  F i g .  3, which shows t h a t  a s h i f t  in  t h e  v i b r a t i o n  phase  a t  t h e  d i s t a n c e  Ax = 
0 .18  m does  n o t  exceed  10%; x v a r i e s  f rom 4 .7  t o  2 f o r  t h e  l e a d i n g  and t r a i l i n g  e d g e s ,  
r e s p e c t i v e l y o  

We s h o u l d  n o t e  t h a t  in  r e a l  e x p e r i m e n t s  p e r t u r b a t i o n s  o f  f i n i t e  a m p l i t u d e  were g e n e r a t -  
ed.  T h e i r  i n t e r a c t i o n  w i t h  t h e  main f low and each  o t h e r  i s  more complex t h a n  in  t h e  f o r e -  
g o i n g  model .  A c o m p a r i s o n  o f  t h e  c u r v e s  in  F i g s .  2 and 3 i n d i c a t e s  t h a t ,  in  cement ,  t h e  
p e r t u r b a t i o n s  n o t  j u s t  a t t e n u a t e  bu t  a l s o  c o n t r i b u t e  t o  RW a m p l i t u d e ,  r e d u c i n g  i t  s u b s t a n t i -  
a l l y .  B e s i d e s ,  we know from n o n l i n e a r  f i l t r a t i o n  t h e o r y  [9 ,  10] t h a t  in  models  o f  t h e  t y p e  
o f  ( 4 . 8 )  p e r t u r b a t i o n s  p r o p a g a t e  w i t h  a f i n i t e  v e l o c i t y .  Th i s  f a c t ,  n o t  i n c o r p o r a t e d  i n t o  
t h e  p r e c e d i n g  a n a l y s i s ,  i s  wor th  f u r t h e r  e x a m i n a t i o n .  

The a u t h o r s  t hank  M. E. Gorbunov and O. V. Shapeeva  f o r  h e l p  w i t h  p h y s i c a l  and compute r  
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